If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y-12=0
a = 1; b = 12; c = -12;
Δ = b2-4ac
Δ = 122-4·1·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{3}}{2*1}=\frac{-12-8\sqrt{3}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{3}}{2*1}=\frac{-12+8\sqrt{3}}{2} $
| 3k+9k=33 | | 5/7n=83/5 | | 2x-13=-3+x | | .25x=148 | | (h+14)+()+14=()+14+160 | | 8x/2=16 | | x+(x+4)-6=50 | | (1/3)g+6=12 | | -3v+7=22 | | -3v+7=2 | | 7=z−79/2 | | y=4(5)-2 | | 24=8(g-86) | | x+3=5x-12 | | 4(p+6)=80 | | 8x+66°=90° | | 5=g/3-3 | | 2=g-94/2 | | 32=g/4+26 | | 32=g4+ 26 | | r/9+28=36 | | 81=9(q-86) | | 4^5x=1500 | | w4+ 4=8 | | 3y+17=82 | | x-1.26=-8.89 | | 24x-2=(2/7)x | | 50(20-y)+100y=1250 | | 12-10x+5x+1=-18 | | -20=p/20 | | 24x-2=2/7x | | 4x–6=3x+8 |